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Abstract

In this Project, we successfully upscale both the simu-
lated and observed Gravitational lensing data provided by
Google Summer of Code 2025. We have tried 3 models,
namely RCAN [12], SRResNet and SRGAN. We used 3 eval-
uation metric, namely MSE, SSIM and PSNR. We also used
bilinear interpolation as a baseline to see the advantages of
using a neural network. The results show that RCAN [12]
and SRResNet outperform the traditional interpolation ap-
proach in MSE, PSNR and SSIM. We also notice that the use
of transfer learning greatly improved the training of models
on observed data. We also verified that super-resolved im-
ages will improve classification accuracy compared to the
lower-resolved image.

1. Introduction
Ever since astronomer Fritz Zwicky introduced the con-

cept of dark matter, physicists have been searching through
the entire universe for clues that could unveil the nature of
these mysterious substances. The candidate of dark matter
in the Beyond Standard model, e.g. WIMPS [8] and ax-
ion particles [5], have not yet been observed in the particle
collider. The only evidence of dark matter comes from its
gravitational attraction. This motivates the thorough study
of the dark matter substructure found in strong gravitational
lenses, such as Cold Dark Matter(CDM), Axion Dark Mat-
ter(Axion) and No-Substructure Dark Matter (NSDM/NO).
[1]
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Figure 1. Different GLS formed by different dark matter

Gravitational lensing(GLs) occurs when a massive celes-
tial body — such as a galaxy cluster — causes a sufficient
curvature of spacetime for the path of light around it to be
visibly bent, as if by a lens. These lenses are located more
than 5 billion light years away from Earth [2], causing its
image to be blurry. This hinders physicists from observing
the structure of GLs in order to correctly identify the type
of dark matter that creates it.

Our aim with this project is to build a deep learning
model to upscale the resolution of these images for better
clarity and classification of structures.

The number of high-resolution observed GLs have been
scarce, which places a large difficulty for deep learning pur-
poses. Therefore, we first need to train our model to upscale
the simulated data. Then we used our pre-trained model to
upscale the observed data. Then we can use the upscaled
image to do classification to see what is the potential dark
matter that forms it.

Universe

Low resolution GLs

High resolution GLs

GLs with different
Dark matter
substructure

Lens-searching

Super resolution

Classification

Theory

High resolution simulated GLs

Low resolution simulated GLs

Lens equation

Noise filterSuper resolutionTransfer Learning

Figure 2. General Scheme in the search of Dark matter

Since the actual Gls has no labels, the classification CNN
is trained on simulated Gls.



2. Related Work
2.1. Classification CNN on simulated GLs

There has been huge success in using a convolutional
neural network) [1,3], such as Resnet-18,AlexNet and VGG
to classify the type of dark matter that creates the gravita-
tional lenses.

Figure 3. Success on classification task

2.2. Traditional SR neural network

There are experiments on using different traditional SR
neural network such as RCAN, RDN and SRResnets [4].
Due to the simplicity of their implementations, it will be
used as our base models.

Figure 4. SR task using traditional neural network

2.3. Physic-informed neural network

There are also models that use Physics-informed neural
networks(PINNS) [7], that calculates the deflection angle to
reconstruct the lens.

Figure 5. SR task using PINN

However, all of the above models only use simulated
data to check for accuracy. The noise kernels and down-
sampling filters imposed on the images are known and sim-
ple. For actual observed images, the noise are unknown and

more complicated. Therefore, we would like to see its effect
if it is applied on observed GLs.

3. Data
For the super-resolution task, We will be using the fol-

lowing two simulated and observed GLs datasets provided
by 2025 GSoC DeepLens evaluation test:

• Simulated data

• Observed Data

There are 10000 simuated greyscale 150 × 150 high res-
olution (HR) images and their corresponding 75 × 75 low
resolution (LR) images. We also have 300 observed data
with the same HR,LR pair.

For the classification task, we use the simulation from
lenstronomy. The training data can be downloaded
from Github [9].

We prepared 9000 training data and 1800 of size 64× 64
validation data of simulated GLs of 3 category, Axion,CDM
and NSDM aforementioned.

4. Evaluation metric
For the super-resolution task, we will use the follow-

ing evaluation metrics MSE (Mean Squared Error), SSIM
(Structural Similarity Index), PSNR (Peak Signal-to-Noise
Ratio). A higher PSNR and a lower MSE means that the dif-
ference between 2 images is small. While both PSNR and
MSE capture the pixel-wise difference in image, SSIM is
useful in capturing more nuanced changes in image quality,
including local variations and textures. The closer SSIM to
1 means the image appear more natural to human eyes.

(a) Axion (b) CDM

For the classification task, we will one vs rest ROC
curve, which is a graph of the true positive rate (TPR)
against the false positive rate (FPR) for the different pos-
sible thresholds of a diagnostic test. AUC, the Area under
ROC curve(AUC) will show how accuracte the model is, the
closer to 1, the more accurate the model is. The confusion
matrix, on the hand, shows that which 2 classes our models
will usually confuse with each others.

https://drive.google.com/file/d/x1uJmDZw649XS-r-dYs9WD-OPwF_TIroVw/view?usp=sharing
https://drive.google.com/file/d/1plYfM-jFJT7TbTMVssuCCFvLzGdxMQ4h/view?usp=sharing


5. Methods

5.1. SR Model

We compared the performance of 3 models.

• Residual Channel Attention Network(RCAN): is a
deep learning model that uses stacked residual groups
with long skip connections to enable very deep net-
works (e.g., hundreds of layers) while easing gradient
flow - each residual group contains multiple Residual
Channel Attention Blocks (RCABs) [10].

Figure 7. RCan

• Super-Resolution Residual Network(SRResnet):
SRResNet builds upon the ResNet (Residual Network)
framework, utilizing skip connections to enable train-
ing of very deep networks by alleviating the vanishing
gradient problem [6].

Figure 8. SRResnet

• Super-Resolution Generative Adversarial Net-
works(SRGANS): SRGAN uses a generator to
upscale LR images and a discriminator to distinguish
between real HR images and generated super-resolved
images. The adversarial training encourages the
generator to produce more realistic textures [6].

Figure 9. SRRGan

Experiments show that RCAN and SRresnet outperforms
SRGAN.

5.2. Transfer learning

We tried 2 types of transfer learning methods, namely
fine-tuning and adversive discriminative domain adaptation.

1. Fine-tuning

Figure 10. Fine-tuning

After obtaining our pre-trained model on simulated GLs,
we can perform fine-tuning. It first freezes the feature ex-
traction layer of the model, and trains the upsampling layer
on observed GLs. This assumes that the simulated GLs
and observed GLs have simular feature but different gen-
eration method. Then we unfreeze all layers and train with
a smaller learning rate on observed GLs. This ensures that
all layers can fit better in the observed data.

Figure 11. Fine tunning

2. Adversive Discriminative Domain adapta-
tion(ADDA)

Figure 12. Fine tunning

The observed GLs(target domain) and simulated
GLs(source domain) are 2 different domains, but both re-
quire up-sampling.



To perform domain adaptation using ADDA [11], we
want the encorder E to encode the target feature into the
source, so that the SR model can up-sample it. This can be
done by confusing the discriminator.

However, since the size of our observed data is small,
we fail to train the discriminator to distinguish between 2
domains, which pulled down the performance of encoder as
a whole.

Fine-tunning ADDA
MSE 0.004609 0.009760
SSIM 0.7388 0.4262
PSNR 29.99 23.56

Figure 13. Comparison of ADDA and fine-tunning using SRresnet
as SR model

Therefore, we settled with fine-tunning.

6. Experiment
Step I: SR on simulated GLs

Bilinear RCAN SRResnet SRGAN(baseline)
MSE 0.00006921 0.00006035 0.00005981 0.002784
SSIM 0.9756 0.9772 0.9765 0.5664
PSNR 41.64 42.23 42.27 26.52

We fit the training data using MSE loss and evaluate the
test data using all 3 metrics.

At this stage, we also experimented to approximately ob-
tain a good learning rate.

(a) SRResnet (b) RCAN

Figure 14. Validation loss using different learning rates

From the evaluation, it seems that both RCAN and SR-
Resnet perform equally well on the super-resolution, while
SRGAN does not do a good job. It may be due to the fail-
ure to convergence during training. We can also see that

RCAN and SRResnet outperforms bilinear interpolation,
this shows the edge of using a neural network.

Additionally, we can also observe that if we let RCAN
train for longer, we can potentially achieve better results
since the loss is still decreasing greatly. Due to time con-
straints with limited resources, we did not train for longer
time period.

Step II: SR on observed GLs

Bilinear RCAN SRResnet Unpretrained RCAN(baseline)
MSE 0.01010 0.004488 0.004609 0.008310
SSIM 0.4467 0.7756 0.7388 0.3280
PSNR 24.05 32.57 29.99 24.58

Due to the poor performance of SRGAN, we only com-
pare the effect of SRresnt and RCAN on observed GLs.
From Figure 15(b)sample(2) we can see that since real data
contain much more noise than observed data, bilinear in-
terpolation fails to remove the noise in the image, caus-
ing its SSIM to be much lower than RCAN and SRRes-
net.The neural network model SResnet and RCAN on the
other hand, are very good at denoising. We can also notice
that if we do not apply fine-tunning on RCAN, the perfor-
mance of RCAN will be even worse on SSIM than bilin-
ear interpolation. From Figure 15 sample (1,2), we can see
that pre-trained RCAN turns the image blank to lower MSE.
This shows that transfer learning is crucial for RCAN to up-
sample the observed data.

However, we can also see that the models generally per-
form worse on observed Gls than simulated Gls from the
evaluation metrics. From the image, many fine details, such
as the brim of ring in figure(15a) in LR is disappeared in
SRresnet, although RCAN is able to slightly keep it. Nev-
ertheless, no models are able to see that the bright dot in
figure(15a) is actually coming from 2 light sources. This
raises a concerns whether the deterministic feature of a GLs,
for determining its type of dark matter, will be lost or fabri-
cated by the models. To confront our worries, we will test
our models on the accuracy of classification in the stepIII.

The following is the result of the SR image.

The red square shows local feature that is magnified in
the image below.



(a) Sample 1

(b) Sample 2

Figure 15. Comparison of SR results on simulated SRs

(a) Sample 1

(b) Sample 2

Figure 16. Comparison of super-resolution results on observed
GLs



Step III: Classification on simulated GLs

To verify our assumption, a high resolved image will in-
crease classification accuracy than low-resolved image.

Then we down-sample it to size 32×32 then up-sample
it using our SR-model, which is pretrained using all 3 cate-
gories.

HR LR SR
accuracy 0.9200 0.3417 0.9167

Figure 17. Accuracy of classification using all 3 category to train
SR model

From the data, we can see that high-resolved image dras-
tically improved classification using simulated data. And
we can also see that the accuracy between HR and SR is
close, which shows the SR model has low reconstruction
loss.

(a) HR classification (b) SR classification (c) LR classification

Figure 18. Classification comparisons between high resolution
(HR), super resolution (SR), and low resolution (LR) images.

From the ROC curve of HR and SR, we can see that the
model is very good at identifying NSDM, with exactly 1
AUC score. For LR, we can see that the AUC of all the 3
categories are not decent at all.

On the other hand, we can also notice that if the SR-
model has not been trained on a certain type of gravitational
lenses, it is very probable for the up-sampled SR image to
be misclassified.

This time, we only allow our SR model to be trained on
CDM catergory.

HR LR SR
accuracy 0.9200 0.3417 0.3333

Figure 19. Accuracy of classification using only CDM to train SR
model

This shows that SR-model will very likely to add in arti-
ficial features to the gravitational lenses that does not exist
in LR image. If the actual dark matter is not made up of any
3 category of dark matter, it will not be detected.

7. Conclusion
In this project, we observe the power of neural networks

on the super-resolving gravitational lenses. This type of
technique can likely be used for other astronomical images
such as black holes and galaxies. Although super resolution
can improve classification accuracy if the dark matter are
known by the SR model, it will fail if the dark matter are
not known. In the future, we can investigate what type of
features are learned by the model for classification by rep-
resentation learning. This may help physicists to determine
the property of dark matter with better ease.

8. Code
We are willing to share this report and code with others.

The code for our experiments is available on the following
github repository.

Additionally, please refer to the references below for fur-
ther elaboration.
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